Fundamentals & Application of Medium Voltage Adjustable Speed Drives (ASD)

Manish Verma Senior Member IEEE TMEIC

IEEE IAS Atlanta Chapter November 21st 2016, Noon – 1:15PM

Safety Moment

- Petextrians

After decades of decline, pedestrian fatalities are once again on the rise. "Petextrians" — people who text while walking — may be partly to blame, according to the report." (ABC News Report)

Quality means doing it right when no one is looking.

- Henry Ford

Parameter	Description
Service types	Rotating machinery such as pumps, compressors, extruders, fans, blowers, etc.
Power Level (HP)	500HP – 130,000HP
Voltage range(kV)	Medium Voltage, > 1.0 kV

Typical Motor Starting Characteristics

Why is starting large motors stressful?

- Highest current is seen when shaft is still
- Starting currents create stresses and torques that can damage motor and attached load
- The motor and the load must breakaway and accelerate
- Remember current equals heat !

Power System Challenge

- Balance allowed inrush amps with Voltage drop
- Balance power system effects with torque demand of load

Motor Speed Control Strategies

Good Reference: Larabee, J.; Pellegrino, B.; Flick, B., "Induction motor starting methods and issues," *Petroleum and Chemical Industry Conference, 2005. Industry Applications Society 52nd Annual*, vol., no., pp.217,222, 12-14 Sept. 2005

Nevelsteen, J.; Aragon, H., "Starting of large motors-methods and economics," *Petroleum and Chemical Industry Conference, 1988, Record of Conference Papers., Industrial Applications Society 35th Annual*, vol., no., pp.91,96, 12-14 Sep 1988

What is an ASD? – Other common terminology

What is an ASD?

What is an ASD?

What is an ASD?

What does an ASD mean for the motor?

Direct-on-line / Fixed Frequency

Variable Frequency

What does an ASD mean for the motor?

What do we mean by "Medium Voltage ASD"

- Medium Voltage drives range from 2300V 13800V.
- Voltage defined at output.
- Input voltage to the VFD between 2.3kV 138kV
- ASD = VFD = EVFD = VVVF (can be used interchangeably)

Large Water-Cooled ASD

Typical Range of ASDs

Single VFD / single motor

Multi drive – Multi Motor

Historical Overview

Time Line of Adjustable Speed Drives

	DC Motor	Synchronous	Induc	tion Motor	Ind/Synch Mo	Ind/Synch Motor	
	Drives	Motor drives	[Drives	Drives	Drives	
1955	1965	1975	1985	1995	2005		

ASD Topologies

• AC Drive Topology:

A map-like diagram showing the elements of an AC drive and the relationships between them.

- The Common Threads:
 a All AC Drives rectify AC to DC.
 a All AC Drives use switches to create AC from DC.
- Drive topologies were created as power rectifiers and switches grew in ratings and capabilities.
- Each new or uprated device opens up new applications

Major ASD Topologies

Voltage Source Inverters (VSI)

 Energy storage/DC Link is
 Capacitor

- Maintains constant Voltage at DC Link
- Converter (AC/DC) is either Passive (using diodes) or Active (using PWM)

- Maintains constant current at DC Link
- Converter (AC/DC) is Active (using phase control or PWM)

Comparing Drives of All Topologies

- Current Source Drives
 - LCI Load Commutated Inverter
 - GTO/SGCT Current Source Induction Motor Drive
- Voltage Source Drives
 - LV IGBT "Paice" Multilevel PWM
 - MV IGCT PWM Diode or Active Source/Converter
 - MV IGBT PWM Integrated package
 - MV IEGT PWM Active or Diode Source/Converter

Good Reference for more details: Lockley B, Paes, R. "What's new with MV Drives" <u>http://sites.ieee.org/northern-canada-pesias/files/2014/02/Whats-New-with-MV-Drives-IEEE-NCS-2014-Final.pdf</u>, Pages: 43 – 58.

Must consider the whole system in which the ASD will work

- From Utility to finished product or process
- Consider environment
- Consider effects on utility
- Consider the needs of the load
- Consider the effect of ASD on the motor and drive train

ASD Overall Success Factors

- Minimum first cost, including installation
- Maximum long-term payback.
- Good match to process & loads.
- Long equipment life.
- Ease of use for operators & technicians.
- Minimum impact on nearby equipment.
- Easy to maintain & repair.
- Smallest foot print

Application considerations can divided into the following:

Electrical/Load Application Factors
 Installation Factors (E-house integration/Cabling)
 ASD Protection & Cooling methodology
 ASD standards and Factory Testing

Electrical/Power Application Factors

- Continuous kW or HP & duty cycle
- Torque & Power Overload requirements
- Load factors: CT, VT, CHP, regenerative, non-regenerative.
- Drive and Motor Voltage
- Power system compatibility

Load Type Examples

Constant Torque

- Conveyors
- Grinding Mills
- Kilns
- Reciprocating Compressors
- Positive Displacement [Screw Type] pumps, compressors

Variable Torque

- ID / FD Fans
- Centrifugal Pumps
- Centrifugal Compressors
- Pipeline booster pumps
- Axial Compressors

Keep In Mind

Drives are sized & priced based on Motor Full Load Current AND Operating Envelope

Example:

- 7000 HP, 1800 rpm,
 4000V, FLA 910A
 = 6300 kVA
- 2. 7000 HP, 450 rpm,
 4000V, FLA 1240A
 = 8600 kVA

		4000 Series 4160 Volts Out	
		Motor Shaft hp (kW)	Output Amps I _{Phase} AC
(1220 mm) 48 in (1220 mm) 48 in (1220 mm)	Frame A4µ	600 (448)	74
	A4	800 (599)	99
48 in	ame /	900 (671)	112
60 in (1524 mm)	æ	1000 (746)	124*
		1000 (746)	124
2642 T	Frame 1	1250 (933)	155
44 in (1102 mm)		1750 (1306)	217
5 122 in (3099 mm)		2000 (1492)	248*
642 mm)	ne 2	2250 (1679)	279
50 in (1257 mm) 164 in (4166 mm)	Frar	2500 (1865)	310
6642mm)	ne 3	3000 (2238)	372
50 in (1257 mm) 174 in (4420 mm)	Fran	3500 (2611)	434

Lets take an example

- <u>Variable Torque</u> (VT) ratings usually include 110 -115% OL rating for 60 seconds when starting from rated Temp
- <u>Constant Torque</u> (CT) rating usually includes 150% OL rating for 60 seconds when starting from rated Temp.

On Constant Torque applications, take a close look at the Speed Torque Curve for selecting the correct ASD size

Power System Compatibility

- Power distribution (available utilization voltages)
- Protection.
- Harmonics limits.
- Power factor control.
- Efficiency.

- Breakers, transformers, and cable must be rated to carry full kVA & harmonics.
- Transformers need to be "drive isolation" rated with proper considerations for the drive type.

Power system compatibility - Keep In Mind

- Always provide and electrical one-line diagram
- Some tips for ASD voltage level selection

	Motor Power	ASD Input Voltage	Motor Voltage
•	250HP – 5000HP	<mark>2.3, 4.16, 3.3, 6.6</mark> , 10, 11, 13.8 kV	2.3, 4.16, 3.3, 6.6, 10, 11 kV
•	5000HP – 10,000HP	4.16, <mark>6.6</mark> , 10, 11, 13.8, 25, 34, 66 kV	Matched to ASD output voltage
•	>10,000HP	10, 11, 13.8, 25, 34, 66, 110, 138 kV	Matched to ASD output voltage

Note: if ASD is used for starting ONLY, then Motor Voltage = Utility Voltage (Max 13.8kV)

- MV drive \$ / HP decreases with HP
- Installed cost must be considered including:-
 - Harmonic mitigation requirements
 - Cabling costs
 - Installation costs
 - Reliability

Drive Output Voltage & Motor Application

- Why Pick LV [<690v] Drive & Motor?
 - LV drives are lower cost / HP than MV
 - Reduces some safety & MV training concerns
 - HP range is small enough
 - Individual preference
- Why pick MV over LV?
 - Lower cost wiring, smaller cables
 - Lower power system harmonic impact
 - High HP LV require dual winding motors
 - Individual preference

Recent Trend:

Some users select MV >250 HP Many users select MV > 500 HP.

- For drives > 1000 HP, MV makes sense
- For long cable runs, MV makes sense
- For drives < 500 HP, LV makes sense.
- If low power system harmonics are required, LV filter or multi-pulse cost adders can favor MV over LV.
- In the range 500 to 1000 HP the various application & installation factors apply.
- Final choice may boil down to user preference.

Power Line Harmonics

- "Harmonics" are voltages and currents at frequencies that are multiples of utility power frequency.
- Harmonic currents are drawn by loads such as drives, computers and ballasts that take their power in non-sinewave format. These are socalled non-linear loads.

IEEE 519-2014 Table 10.3 I_{TDD} Limits

Maximum Harmonic Curent Distortion in % of I-Load							
Isc to I-load Ratio	h < 11	h = 11 to <17	h = 17 to <23	h = 23 to <35	h = 35 & up	TDD %	
< 20	4.0	2.0	1.5	0.6	0.3	5.0)
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0	
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0	
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0	
>1000	15.0	7.0	6.0	2.5	1.4	20.0	

Notes: Even Harmonics limited to 25% of the harmonic level

TDD = Total Demand Disortion %, based on maximum demand current at the point of common coupling [PCC].

Isc = Maximum Short Circuit current or kVA at the PCC

I-load = Fundamental freqency load current or kVA at the PCC

Specifying a min. 24-Pulse VSI VFDs or Active Front End VFD is safest option for harmonic mitigation

Power System & Drive Efficiency

- Drive itself is typically 98% or more efficient
 With all fans, transformers, pumps, etc, efficiencies of 96-97% are common
 - □ Efficiency impact of drive varies with speed
- Efficiency effect of the drive can be eliminated at full speed by synchronous bypass.

For Air-cooled Versus Water-cooled Overall system efficiency use:

92% for air-cooled (Includes VFD and E-house HVAC) 96% for water-cooled (Includes VFD and E-House HVAC)

Speed & Torque Control Requirements

- Each application is unique
 - Simple, free-standing pumps
 - Complex e.g. sync to utility, multiple motors per drive, multiple drives on same load
- Process control usually 4-20 mA for speed
- Go Tachless if possible
 - Precise speed control rare with MV drives and high kW level drives
 - High load torques (>150% OL) may require tachometer

Operator Control and Communication

- Interface with larger process
 - Controls for operator -
 - Simple start-stop contacts
 - More complex HMI
 - Process equipment controls system PLC
- LAN communication of drive status if/as needed to plant PLC or DCS
- Plan for remote diagnostics capability

Drive Design For Reliability

- Minimum parts fewest power components, and simplest firing circuits
- No "Weak links" like marginally rated capacitors, switching devices, etc
- Conservatively rated, fully qualified components
 - Quality built in not "burn-in tested"
 - Quality tracked

ASD Operational / Environmental limitations

- Altitude: De-rate current rating 2-3% per 1000 ft above 3000 feet. May have to de-rate voltage for very high altitudes.
- Temperature De-rate: 1.5% per degree C above base rating (usually 40C) up to max (usually 50 C).
- Drives put out heat must be removed or vented to outside
- ASDs are designed to be installed in a relatively clean, dry environment
 Operation
 - 0 to 40 or 50 C with a relative humidity of 95% maximum, noncondensing.

Storage

•

Equipment is generally designed for a non-operating (storage) temperature range of –25 C to 70 C.

Specifying E-houses – Key to reliability

Good standard to use is PIP ELSSG11, Electrical power center specification
 ASD Vendor to supply:-

E-house requirements

- Minimum requirements for ASD E-houses are:-
 - E-House NEMA rating, Typically 3R
 - Fire/Smoke detection
 - Note: Fire suppression is usually not provided and is optional (like FM200 waterless suppression)
 - N+1 HVAC based on ASD heat loss
 - 480V, 120V Panel boards for lights, control, ASD Aux
 - Bus Ducts or cable trays
 - PE stamp, certifications (if any), access restrictions
 - Local codes. Default is NEC
 - Location of E-house final destination For E-house estimating shipping splits

Sample E-house layouts

Sample E-house layouts

Preferable for ASD vendor to take responsibility of E-house specially for large ASDs

Cables From ASD to Motors

- Drives themselves are usually tolerant of most cable types & methods
- BUT, Cabling affects EMI radiation or motor.
- Cables > 500 meters need special attention [cable capacitance]

Motor-Drive Cable Methods And Tradeoffs

		Relative Performance Area		Usefulness by Drive Type			
Ref	Cable Type or Method	EMI Propagation & Cross-Talk from PWM	Minimizing Bearing Voltages & Currents	2-Level < 690 volts	3 Level, NPC*	5 level or More, NPC*	Comments
A	Open Tray, individual conductors	Poor	Poor	Not recommended	Marginally acceptable	Marginally acceptable	<u>Use caution</u> by separating other conductors from inverter to motor cables by 300 MM [12 inches] or more
в	3-conductor unshielded with 1 ground	Poor	Better	Not recommended	Acceptable	Acceptable	<u>Use caution</u> by separating other conductors from inverter to motor cables by 300 MM [12 inches] or more
с	3-conductor shielded with 1 non- centered ground.	Good	Better	Marginally acceptable	Acceptable	Good	Shield should be grounded at both drive power-common and motor frame
D	3-conductor shielded with 3 symmetrical grounds, continuous extruded aluminum armor	Good	Good	Good	Good	Good	Shield should be grounded at both drive power-common and motor frame

* NPC = Neutral Point Clamped Inverter Power Circuit

0000			
A	В	С	D
Open Tray	Unshielded, 1 ground	Shielded, 1 ground	Shielded, 3 ground

Questions?

The Curse of Knowledge